Psst...

Do you want to get language learning tips and resources every week or two? Join our mailing list to receive new ways to improve your language learning in your inbox!

Join the list

English Audio Request

TheDoctor
701 Words / 1 Recordings / 0 Comments

Mechanical engineering is an engineering discipline that applies the principles of physics and materials science for analysis, design, manufacturing, and maintenance of mechanical systems. It is the branch of engineering that involves the production and usage of heat and mechanical power for the design, production, and operation of machines and tools. It is one of the oldest and broadest engineering disciplines.
The field requires a solid understanding of core concepts including mechanics, kinematics, thermodynamics, materials science, and structural analysis. Mechanical engineers use these core principles along with tools like computer-aided engineering and product lifecycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, motor vehicles, aircraft, watercraft, robotics, medical devices and more.
Mechanical engineering emerged as a field during the industrial revolution in Europe in the 19th century; however, its development can be traced back several thousand years around the world. The field has continually evolved to incorporate advancements in technology, and mechanical engineers today are pursuing developments in such fields as composites, mechatronics, and nanotechnology.

Degrees in mechanical engineering are offered at universities worldwide. In Bangladesh, China, India, Nepal, North America, and Pakistan, mechanical engineering programs typically take four to five years and result in a Bachelor of Science (B.Sc), Bachelor of Technology (B.Tech), Bachelor of Engineering (B.Eng), or Bachelor of Applied Science (B.A.Sc) degree, in or with emphasis in mechanical engineering. In Spain, Portugal and most of South America, where neither BSc nor BTech programs have been adopted, the formal name for the degree is "Mechanical Engineer", and the course work is based on five or six years of training. In Italy the course work is based on five years of training; but in order to qualify as an Engineer you have to pass a state exam at the end of the course.

Some mechanical engineers go on to pursue a postgraduate degree such as a Master of Engineering, Master of Technology, Master of Science, Master of Engineering Management (MEng.Mgt or MEM), a Doctor of Philosophy in engineering (EngD, PhD) or an engineer's degree. The master's and engineer's degrees may or may not include research. The Doctor of Philosophy includes a significant research component and is often viewed as the entry point to academia.

Standards set by each country's accreditation society are intended to provide uniformity in fundamental subject material, promote competence among graduating engineers, and to maintain confidence in the engineering profession as a whole. Engineering programs in the U.S., for instance, are required by ABET to show that their students can "work professionally in both thermal and mechanical systems areas." The specific courses required to graduate, however, may differ from program to program. Universities will often combine multiple subjects into a single class or split a subject into multiple classes, depending on the faculty available and the university's major area(s) of research. Fundamental subjects of mechanical engineering usually include:

- Statics and dynamics
- Strength of materials and solid mechanics
- Instrumentation and measurement
- Thermodynamics, heat transfer, energy conversion, and HVAC
- Fluid mechanics and fluid dynamics
- Mechanism design (including kinematics and dynamics)
- Manufacturing technology or processes
- Hydraulics and pneumatics
- Mathematics - in particular, calculus, differential equations, and linear algebra.
- Engineering design
- Mechatronics and control theory
- Material Engineering
- Drafting, CAD (including solid modeling), and CAM

Mechanical engineers are also expected to understand and be able to apply basic concepts from chemistry, chemical engineering, electrical engineering, civil engineering, and physics. Most mechanical engineering programs include several semesters of calculus, as well as advanced mathematical concepts which may include differential equations and partial differential equations, linear and modern algebra, and differential geometry, among others.
In addition to the core mechanical engineering curriculum, many mechanical engineering programs offer more specialized programs and classes, such as robotics, transport and logistics, cryogenics, fuel technology, automotive engineering, biomechanics, vibration, optics and others, if a separate department does not exist for these subjects.
Most mechanical engineering programs also require varying amounts of research or community projects to gain practical problem-solving experience. In the United States it is common for mechanical engineering students to complete one or more internships while studying, though this is not typically mandated by the university.

Recordings

Comments